Note
Click here to download the full example code
Out:
--DUMP-- └-Alssm : polynomial, A: (3, 3), C: (1, 3), label: 2nd order --PRINT-- A = [[1 1 1] [0 1 2] [0 0 1]] C = [[1 0 0]]
import matplotlib.pyplot as plt import numpy as np from scipy.signal import find_peaks import lmlib as lm # ------------ Evaluate ALSSM ------------- js = np.arange(-20, 20) # ALSSM evaluation range alssm = lm.AlssmPoly(poly_degree=1,label='1th order') x0s1 = [[-1, 2]] # ALSSM initial state vectors ys1 = alssm.eval(x0s1, js) alssm = lm.AlssmPoly(poly_degree=2,label='2nd order') x0s2 = [[-1, 2, .1]] # ALSSM initial state vectors ys2 = alssm.eval(x0s2, js) # Printing Model to Console print("--DUMP--\n", alssm.dump_tree()) print("--PRINT--\n", alssm) # ------------ Plot ALSSM ------------- fig, ax = plt.subplots(1,1, figsize=(4,3)) ax.set_title('Polynomial ALSSM Evaluation $s_i(x_0)$') ax.plot(js, ys1[0,:,:], '.-', lw=.5, label='$x_0 = '+str(x0s1)+'^\mathrm{T}$') ax.plot(js, ys2[0,:,:], '.-', lw=.5, c='k', label='$x_0 = '+str(x0s2)+'^\mathrm{T}$') ax.set( xlabel='Evaluation index $i$') plt.legend() plt.show()
Total running time of the script: ( 0 minutes 0.133 seconds)
Gallery generated by Sphinx-Gallery