Note
Click here to download the full example code
Out:
--DUMP-- β-Alssm : stacked-so, A: (3, 3), C: (1, 3), label: None β-Alssm : sinusoidal, A: (2, 2), C: (1, 2), label: cosine model β-Alssm : polynomial, A: (1, 1), C: (1, 1), label: const number --PRINT-- A = [[ 0.95105652 -0.30901699 0. ] [ 0.30901699 0.95105652 0. ] [ 0. 0. 1. ]] C = [[1. 0. 1.]]
import matplotlib.pyplot as plt import numpy as np from scipy.signal import find_peaks import lmlib as lm OMEGA = .1*np.pi # sinusoidal frequency # ------------ Evaluate ALSSM ------------- js = np.arange(-np.int(1.0*np.pi/OMEGA), np.int(1.0*np.pi/OMEGA)+1) # ALSSM evaluation range alssm_cos = lm.AlssmSin(omega=OMEGA, rho=1, label='cosine model') alssm_const = lm.AlssmPoly(poly_degree=0, label='const number') alssm = lm.AlssmStackedSO((alssm_cos, alssm_const)) x0s = [[1, 0, 1]] # ALSSM initial state vectors for sine ys = alssm.eval(x0s, js) # Printing Model to Console print("--DUMP--\n", alssm.dump_tree()) print("--PRINT--\n", alssm) # ------------ Plot ALSSM ------------- fig, ax = plt.subplots(1,1, figsize=(4,3)) ax.set_title('ALSSM Evaluation $s_i(x_0)$') ax.plot(js, ys[0,:,0], '.-', lw=.5, label='$x_0 = '+str(x0s)+'^\mathrm{T}$') ax.set( xlabel='Evaluation index $i$') plt.legend() plt.show()
Total running time of the script: ( 0 minutes 0.133 seconds)
Gallery generated by Sphinx-Gallery